Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase.
نویسندگان
چکیده
In overdose the analgesic/antipyretic acetaminophen (APAP) is hepatotoxic. Toxicity is mediated by initial hepatic metabolism to N-acetyl-p-benzoquinone imine (NAPQI). After low doses NAPQI is efficiently detoxified by GSH. However, in overdose GSH is depleted, NAPQI covalently binds to proteins as APAP adducts, and oxygen/nitrogen stress occurs. Toxicity is believed to occur by mitochondrial dysfunction. Manganese superoxide dismutase (MnSOD) inactivation by protein nitration has been reported to occur during other oxidant stress-mediated diseases. MnSOD is a critical mitochondrial antioxidant enzyme that prevents peroxynitrite formation within the mitochondria. To examine the role of MnSOD in APAP toxicity, mice were treated with 300 mg/kg APAP. GSH was significantly reduced by 65% at 0.5 h and remained reduced from 1 to 4 h. Serum alanine aminotransferase did not significantly increase until 4 h and was 2290 IU/liter at 6 h. MnSOD activity was significantly reduced by 50% at 1 and 2 h. At 1 h, GSH was significantly depleted by 62 and 80% at nontoxic doses of 50 and 100 mg/kg, respectively. No further GSH depletion occurred with hepatotoxic doses of 200 and 300 mg/kg APAP. A dose response decrease in MnSOD activity was observed for APAP at 100, 200, and 300 mg/kg. Immunoprecipitation of MnSOD from livers of APAP-treated mice followed by Western blot analysis revealed nitrated MnSOD. APAP-MnSOD adducts were not detected. Treatment of recombinant MnSOD with NAPQI did not produce APAP protein adducts. The data indicate that MnSOD inactivation by nitration is an early event in APAP-induced hepatic toxicity.
منابع مشابه
Acetaminophen-induced hepatotoxicity and protein nitration in neuronal nitric-oxide synthase knockout mice.
In overdose acetaminophen (APAP) is hepatotoxic. Toxicity occurs by metabolism to N-acetyl-p-benzoquinone imine, which depletes GSH and covalently binds to proteins followed by protein nitration. Nitration can occur via the strong oxidant and nitrating agent peroxynitrite, formed from superoxide and nitric oxide (NO). In hepatocyte suspensions we reported that an inhibitor of neuronal nitric-ox...
متن کاملMice deficient in Cu,Zn-superoxide dismutase are resistant to acetaminophen toxicity.
Although antioxidants are used to treat an overdose of the analgaesic/antipyretic drug APAP (acetaminophen), roles of antioxidant enzymes in APAP-induced hepatotoxicity remain controversial. Our objective was to determine impacts of knockout of SOD1 (superoxide dismutase; Cu,Zn-SOD) alone or in combination with selenium-dependent GPX1 (glutathione peroxidase-1) on APAP-induced hepatotoxicity. A...
متن کاملThe impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity.
UNLABELLED Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. Th...
متن کاملHepatic mitochondrial DNA depletion after an alcohol binge in mice: probable role of peroxynitrite and modulation by manganese superoxide dismutase.
Alcohol consumption increases reactive oxygen species (ROS) formation, which can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. To test whether manganese superoxide dismutase (MnSOD) modulates acute alcohol-induced mitochondrial alterations, transgenic MnSOD-overexpressing (MnSOD(+++)) mice, heterozygous knockout (MnSOD(+/-)) mice, and wild-type (WT) littermates were sacrifi...
متن کاملN-acetylcysteine increases manganese superoxide dismutase activity in septic rat diaphragms.
The antioxidant N-acetylcysteine (NAC) prevented sepsis-induced diaphragmatic dysfunction. As an indirect antioxidant NAC was shown to induce superoxide dismutase (SOD) activity in immune cells from endotoxaemic mice. The aim of this study was to assess whether NAC acts as an indirect antioxidant by inducing manganese (Mn)-SOD activity in the diaphragms of endotoxaemic rats, while preventing mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 337 1 شماره
صفحات -
تاریخ انتشار 2011